dNTP versus NTP discrimination by phenylalanine 451 in duck hepatitis B virus P protein indicates a common structure of the dNTP-binding pocket with other reverse transcriptases.
نویسندگان
چکیده
Hepatitis B viruses, or hepadnaviruses, are small DNA-containing viruses that replicate through reverse transcription. Their prototype, HBV, causes severe liver disease in humans. The hepadnaviral P protein is an unusual reverse transcriptase (RT) that initiates DNA synthesis by host-factor-dependent protein priming on a specific RNA stem-loop template, epsilon, yielding a short DNA oligonucleotide covalently attached to the RT. This priming reaction can be reconstituted with in vitro-translated duck hepatitis B virus (DHBV) P protein. No direct structural data are available for any P protein. However, P proteins share a number of conserved motifs with other polymerases. Box A contains an invariant bulky residue recently shown to be crucial for dNTP versus NTP discrimination in RTs and some DNA polymerases; its equivalent in DHBV P protein would be phenylalanine 451 (F451). Four mutants, containing glycine (F451G), alanine (F451A), valine (F451V) and aspartate (F451D), were therefore analyzed for their ability to utilize dNTPs and NTPs in in vitro priming. Priming efficiencies with dNTPs decreased with decreasing side chain size but GTP utilization increased; the wild-type enzyme was inactive with GTP. In the context of complete DHBV genomes, all mutant proteins were competent for RNA encapsidation, indicating the absence of global structural alterations. Because the function of the discriminatory residue depends on its specific spatial disposition this strongly suggests a similar architecture for the P protein dNTP-binding pocket as in other RTs.
منابع مشابه
Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase
Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and ...
متن کاملMechanistic Characterization and Molecular Modeling of Hepatitis B Virus Polymerase Resistance to Entecavir
BACKGROUND Entecavir (ETV) is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV) polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr) is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT) dom...
متن کاملComparative kinetics of nucleotide analog incorporation by vent DNA polymerase.
Comparative kinetic and structural analyses of a variety of polymerases have revealed both common and divergent elements of nucleotide discrimination. Although the parameters for dNTP incorporation by the hyperthermophilic archaeal Family B Vent DNA polymerase are similar to those previously derived for Family A and B DNA polymerases, parameters for analog incorporation reveal alternative strat...
متن کاملReduced dNTP binding affinity of 3TC-resistant M184I HIV-1 reverse transcriptase variants responsible for viral infection failure in macrophage.
We characterized HIV-1 reverse transcriptase (RT) variants either with or without the (-)-2',3'-deoxy-3'-thiacytidine-resistant M184I mutation isolated from a single HIV-1 infected patient. First, unlike variants with wild-type M184, M184I RT variants displayed significantly reduced DNA polymerase activity at low dNTP concentrations, which is indicative of reduced dNTP binding affinity. Second,...
متن کاملThe Increased Level of Serum p53 in Hepatitis B-Associated Liver Cirrhosis
Background: The ability of tumour suppressor protein p53 (P53) to regulate cell cycle processes can be modulated by hepatitis B virus (HBV). While preliminary evidences indicates the involvement of protein-x of HBV (HBx) in altering p53 DNA binding, no further data have been accumulated for the significance of serum p53 in chronic hepatitis B virus infected patients. Methods: 72 non-cirrhotic a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 30 7 شماره
صفحات -
تاریخ انتشار 2002